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A MULTI-DOMAIN SPECTRALMETHOD FORSUPERSONICREACTIVE FLOWS*

WAI-SUN DON, DAVID GOTTLIEB & JAE-ttUN JUNG

Abstract. This paper has a dual purpose: it presents a multidomain Chebyshev method for the solu-.

tion of the two-dirnensional reactive compressible Navier-Stokes equations, and it reports the results of the

application of this (:()de to tile numerical simulations of high Math number reaet;ive flows in recessed cavity.

The computational method utilizes newly derived interface boundary conditions as well as an adaptive fil-

tering technique to stabilize the comput:ations. The results of "the simulations are relevant to recessed cavity

flameholders.

Key words, multi-domain spectral method, penalsy interface conditions, supersonic combustor, recessed

cavity flame-holder, compressible Navier-Stokes equations

Subject classification. Applied and Numerical Mathematics

1. Introduction. 'File efficacy of spectral methods for tile numerical solution of highly supersonic,

reactive flows had been previously reported in _bhe 1Puerature. Don and Gottlieb [7, 8 i simulated interactions

of shock waves with hydrogen jets and obtained results showing t;he rich dynamics of tile mixing process as

well as the very complex shock structures. Don and Quillen [9] studied the interaction of a planar shock

with a cylindrical volume of a light gas and showed that the spectral methods used gave good results for the

flows with the shocks and eomplieated non-linear behaviors. In fact the results compared favorably to ENO

schenles.

The methods reported above were based on Chebyshev techniques in one domain. In order to extend

the utility of spectral methods to complex domains, multidomain techniques have to be considered. The

main issue here is the stable imposition of the interface boundary conditions, and in this paper we consider

mainly the penalty method, introduced ('or hyperbolic equations by Funaro and Gostlieb [10, 11].

There is an extensive literature on the subject: Hesthaven [13, 14, 15 i applied penalty BC for Chebyshev

multidomain methods using the characteristic variables. Carpenter et. al. [4, 17, 18] used it in conjunction

with compact finite difference schemes, going from a scalar model equation to the flfll N-S equations in

general coordinate systems. Carpenter, Gostlieb and Shu [5] demonstrated the conservation properties of

the Legendre rnultidomain techniques.

In the current work we follow the same methodology but in the cont;ext of supersonic combustion.

We formulate the st;able interface conditions based on the penalty method in a conservative form for both

Euler and Navier-Stokes equations in two dimensional Cartesian coordinates. We derive stability conditions,

independent on the local flow properties, tbr the penalty parameters [br the Legendre spectral method.

\_ also present here a new adaptive filtering technique that stabilize the spectral scheme when applied to

supersonic reactive ttows.

Implementing this method_ we consider supersonic combustion problems in recessed cavit;ies in order to

establish the efficacy of recessed cavity flame-holders.

* Brown University, Division of Applied Ma.thematics, 182 George Street, Providence, RI 02912 (E-maik wsdon, dig,

jungC_cfm.brown.edu) This work was performed under AFOSR grant no. F49620-02-1-0113 and DOE gr_mt no. DE-F'G02-

96ER25346. This research was supported by the National Aerona.uties aad Space Administration while the second author was

in residenee at ICASE, NASA Langley Research Center, Hampton, VA 23681,



We consider two difl;:_rent cases; (1)Non--reactive flow,s with two chemical ,wecies and (2)Reaetiv(_ flows

with four chemical species.

Recessed cavities provide a high t,emperature, low speed recircula,ting region that can support the pro-

duction of radicals created during chemical reactions. This stable and efficient flame-holding performance

by the cavity is achieved by generating a recirculation region inside the cavity where a hot pool of radicals

forms resulting in reducing the induction time and thus obtaining the auto-ignition [2, 22]. Experiments have

shown that such ef_ciency depends on the geometry of the cavity such as the degree of the slantness of the

af_ wall and the length to depth ratio of cavity L/D. Thus one can optimize the flame-holding performance

by properly adjusting the geometrical parameters of the cavity flame-holder system for a given supersonic

flight regime. There are t;wo major issues of such cavit;y flame-holder system that need to be invest;igated ;

(1) Wh.at is the optimal angle 4' th.e aft wall for" a given L/D? and (2)How does the fuel i.njcetion interact

with cavity flows? An _nswer to these questions require both a comprehensive laboratory and numerical

experiments.

There have been t)revious numerical studies on these questions, many of them rely on the turbulence

models. Rizzetta [19] used a modificat:ion of the Baldwin Lomax algebraic t;urbulence model. Davis and

Bowersox [6] _lso used Baldwin-Lomax model. Zhang et.al. [23] used Wilcox _;-c_ turbulence model. Baurle

and Gruber [3] used the Mentor model. Although the use of the turb,flence models can make it possible

to handle the compressil)le supersonic shear flows, the results are quite model-dependent as they require

parametric assumptions. In this work, we solve the full compressible Navier-Stokes equations with chemical

reactions without any turbulence model, using a multi-domain spectral method.

Results of several numerical studies including the present study have shown that the stability of the

recirculation inside cavity is enhanced for the lower angle of cavity compared to the rectangular cavity.

The presen_ study, however, gives more accurate and finer details of the fields than those done by lower

order numerical experiments. We show that a stationary recirculation regk)n is not fbrmed inside the cavity

contrary to wha'u the lower order schemes predict. A quantitative analysis made in this study shows that

the lower angled wall of the cavity reduces the pressure fluctuations significantly inside the cavity for the

non-reactive flows. We obtained a similar result for the reac'dve flows w?uh the ignition of "bhe filel supt)lied

initially in the cavity.

The rest of this paper is organized as follows. In section 2 the governing equations are given. In section

3 we describe the numerical method used in this work. In this section we present the adaptive-filtering

used to remove the high frequency mode that causes the inst;ability due to the non-smoothness of the flow,

and we derive stable penalt,y internee conditions. In section 4 the system of the supersonic recessed cavity

combustor is described. In section 5 the main results of this work are given and discussed.

2. The Governing Equations. ]In this work, we consider the compressible Navier-Stokes equations

in the presence of the chemical reactions. Since Hydrogen is used as a fuel in our numerical experiments,

fbur chemical species are considered, i.e. H2, 02, H20 and N2 with the chemical reaction between Hydrogen

and Oxygen gases:

(2.1) 2H.2 + 02 _ 2H20.

The two-dimensional compressible Na.vier--Stokes equations in conservative form can be written as:

(2.2) Oq D F OG O F_ OC_ C,+ -+- ........- 8:; +



The state vector, q and the inviscid fluxes, F and G are given by

(P/p'u.

(2.3) q= ,_ ,F=
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Here p is the density, u and v are the mean mixture velocity components of flow, E is the total internal

energy and P is the pressure. The mass fractk)n vector, is f = (fl, f2, f3, f4) T and the column vectors f;,

and f\, are composed of the specific momentum of i th species

(2.4) f_i .... f_;(u + "_), f_i .....f_(v + _).

The velocity field (f)4, fii) of the i m species is tile drift velocity relative to the mean mixture velocity (u, v)

and is determined by

(_._) (_,_,_;_)....._' vr,_
[S_ ""

Here _u is the mixture dynamic viscosiby to be determined in (2.11), _-:md Sc is the Schmidt number which is

taken _;o be 0.22. The viscous fluxes, 1;_ amd C_, are given by

z
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where 0 = (0, 0, 0, 0) T, T is the temperat, ure, @ is the mixture specific heat at constant, pressure, P,. is

the Prandtl number (which is taken to be 0.72) for the normal air and hi is the specific enthalpy of the i th

species and given by

r/,

h,i = h_ + C_i(_") ds

where ?{_ is the refi?rence entbflpy of the i m species and the specific heat of tile i _h species at constant

pressure, @_ is represent;ed as a fourth-order polynomial of T (see [1@. The elements of the viscous stress

tensor are given by

where 6 is the Kronecker delt.a symbol, and A is the bulk viscosity which is taken to be ----}# under the Stokes

hypothesis.



The equation of state is given by tile assumption of tile perfect gas law

,1

i 1

where h', is a nfixture gas constant with the universal gas constant R and Mi is the molecular weights of i th

species. The energy E is given by

,

(rag) z = v Gts)d._ - e + 7,V* + ,#) + _ of_h°,
' i 1

where the mixture specific heat at constant, pressure is given by

4

(m_0) d'", = Z c',JdV.
i 1

2.1. The ehemieal m.odels. We use the same models as in [7]. Each chemical species has rill%rent

dynamica] viscosity #i based on Sutherland's law and we obt.ain the mixture viscosity p by Wilke's law [21],

i.e.

"* # i .f_/ M i
(2.H) " .....F_i ,_ ,

1 + [(Is_/pj)(ffffi)] ½(Mi/M:) _
_ij .....

[s(1+ (;wU_%))]_.

Here P,0i, 7hi and Si are constants. A modified Arrhenius Law gives the equilibrium reaction rate k_, the

forward reaction rate kf and the backward reaction rate kb as

k,, = AcTexp(4.60517(Ee/T .... 2.915))

i<:= Asexp(- HSI(RT))

kb = ki/k_:,

where the activation energy E,, = ] 2925, Ef = 7200 and the frequency factor A__ = 83.006156, A: = 5.541 x

:1014.

The species are ordered as follows : (H2, O2, H20, .N2), and the law of mass action is used to find the

net rate of ctmnge in concentration of i t/' species (_, by t;he single reaction (2.1), i.e.

(_1 z

G=
G ....

where [.] denoted the net rate of change in

2(kd[H212[02] - kt [H20] 9')

- (kf [H2] 9'[02] - &, [H,20] 2)

2(/;.:[H_y[o_]- ,_b[H_O]2)

con centra,tion.

Finally, the chemical source term C in (2.2) is given by

_/,

(2._2) c= (o,o,o,o,G:_s,,GM._,,<_>_,c;:,,_Q

where 0i is the net rate of change in concentration of i th species by the reaction.

In Appendix C, a table of all the necessary coefficients and constants used for 5he reactive Navier-Stokes

equations with species (He, O2, HeO, N:?) are given.



3. The Multi-domainSpectralMethod. In thissectionwedescribethetwocrucialcomponentsof
theChebyshevmultidomaincodeusedinourwork,i.e.theadaptivefilteringandthepenaltymethodfor
thestableinterfaceconditions.

3.1. The adaptivefiltering technique.It is wellknownthatspectralmethodsmayexhibitinsta-
bilitieswhenappliedto nonlinearequations.Tostabilizethespectralschemein_-mefficient:w_-_yweusehere
filtersto attenuatethehighfrequencymodesofthefunctionqN(x, t) smoothly to zero. Thus the filtered

version of a polynomial q_ is given by:

N

, 6, ,_r

k -- N

where a_: is the transform coefficient and _/_ is the basis polynomial of order k (generally the Fourier and

Chebyshev polynomials for a periodic and non--periodic function respectively).

Following Vandeven [20] we define a filter flmction a(_) of order p > 1 as a C _ [-1, 1] flmction satis(ying

= 1, = 0,
(3.2) o-(J)(0) = 0, a(J)(±l) = 0, j < p

where a (j) denotes the j-th derivative.

It can be shown _bhal; the filt:.ered sum (3.1) approximates the original function very well away from t.he

discontinuities. A good example of filter function is the exponential filter. It. is defined as

(3.3) o-(_') .... exp (-_l_l _) ,

where -l 52w = k/N < 1, (_t=- -lne, e is the machine zero and 7 is the order of the filter.

The exponential filter offers the flexibility of changing the order of the filter simply by specifying a

different '-/. One does not have to write a different filter for (titti_rent order. Thus varying ? with N yields

exponential accuracy according to [20]. In the present study the sixth order global smoothing (2/ = 6) is

used. If the order of the filter _/is taken to be too small, say 3' -<.4, tile method becomes to() dissipative.

In the current application, the interaction of tile aft cavity wa.ll and the strong vortex generated by the

shear layer flow over the cavity, creates large pressure variations near t.he corner of the aft; cavity wall. The

local sharp gradient can cause numerical instability an(] a heavier filter is needed to prevent t;he development

of oscillat;ions in t:.his region. This heavy filtering cm_ be used globally and maintain the si:.ability of t.he

scheme, however this dissipates out all fine scale structures, which is highly undesirable when the resolution

of fine scale structures is essential tbr the understanding of the recessed cavity flarneholder systems.

Since this is _ local phenomenon, it is enough to apply a heavy filter only in points in this region.

This Local Adapt:ivc Filtcri'a9 keeps the scheme stable, without dissipating fine scale f_at.ures away fl'orn this

region. 'The local adaptive filtering is carried out where conditions such as q_ < q _<q_ are violated. Here q

can be the mass fraction of each species fi and/or temperature T and qt and q'_ denote the lower and upper

tolerance limits of q. In this work a filtering of the order ? = 2 or ? = 3 is used to reduce the magnitude of

the oscillations ai:. those points.

The results of this work indicate that tile local adapth_e filtering is applied only in a few number (in the

range of 1 to 7) of grid points around the corner of _uhe aft wall once in a while.

3.2. Stable interface conditions. In this paper we use mainly the penalty type interface conditions,

i.e. the boundary conditions are imposed only in a weak form [10, 11]. Successful penalty Jar,efface conditions



wereconstructedbasedonthecharacteristicsfortheNavier--Stokesequationsin [1314,15]andforspectral
methodandforhigh-orderfinitediflbrencemethodsin [4,17,18],andaconservativeformofpenaltyinterface
conditionswasproposed[5]forr,heLegendrespectralmethod,l_%llowingthesameideaasthoseworks,we
considertwointerfaceconditions,i.e.

1. The averaging method, in which the interfe, ce conditions are obtained by averaging the st:._,t:evectors

of t;he two adjacent domains, and

2. The Penalty me{hod m conservat:ivc form in which the interface conditions are satisfied only in a

weak tbrm, leaving the approximations not. necessarily continuous at the interfaces.

In the following sections we will give the penalty interface conditions for the Euler and Na.vier-Stokes

equations and also show that the averaging method is a subset of the penalty method.

8.2.1. Conservative penalty internee conditions. Con,_der equation 2.2 with the inviscid part

only, in the z-direction in the interval ----2< z < 2, i.e.,

(3.4) Oq OFo_+7. =0.

For simplicity, assume that we have two domains in this interval with the interface a.t x = 0, q_(z,*)

..[1 "X /;xdenotes the numerical sohltion ira the left domain a: _<. 0 and qMb ', -) in the right domain x ._"<.0. Note that

the numerical solut;ion is composed of two polynomials of different, orders. The Legendre spectral penalty

method is given by

"_ azkF(qW_Oq ,\, ........................1____:_=
----0i7+ O:_" B (qk (---2, t)) -+-

7-_0,_(,)[f+(qk(0,_)) .... f+(q_'(0, t))] -+-

I 0 '- HI- ,r_O,_(x)[f-(q_,_(,l:)) .... ,] (<,_(),t),]

Oq_ Ol. v_ rr,
+ -- ,'_(q_(2, t)) +

Ot Ox

,-3QM (_)[f+(q_(o_))....f+(_k(o,t))]±

(3._) _ OM(:_)[f-(q_'(0,_)) - f-(qk (0,,,))1

where/3 is a boundary operator at the end points Le., x .....±2 and I_ and I_{_ are the Legendre interpolation

operators for the left anti right domains respect;ively.. The positive and negative flu-ms f+ art<] f- are defined

by

f± .... :j' SA±S--adq,(3.6)

with

(3.7)
OF

A - - SAS ---j.
Oq

The Jacobian matrix el is assumed to be symmetric. A+ and A- are the diagona.1 matrices composed of

positive and negative eigenvalues of A respectively. QN(x) anti QM(x) are polynomials of orders N anti eli

respectively such that they are zero at; all the collocation points except the interface points x .....0 (for exam;ole

QN(x) ..... (_-</2)'I)(_/'2) 0 < x <" '_ where 7_(x) is the Chebvshev polynomial of degree ?¢). The penalty

parameters r_,r2, r:3 and r4 are all constants. Since we are interested only in the interface conditions, we

ignore the boundary operator B at x = ±2. Define the discrete scalar product (p, q)_, = _)_:0 pT(_)q,(-< W_.

Wi is the weight in the Gauss-Lobatto-Legendre quadrature formula. With the discrete product, the energy



/qt) is defined by. /£(t) = (qk(x, tS,,q_\T(z,t))_\,l + (?M(x,t),,_1_ _._I_H(x,_J, t))M. The stability conditions of penalty..

parameters are given by the following theorem [5]:

THEORE'M 3.1. The energy i.s boy, haled by the initial energy of the ,sy_sterrt if the following conditions are

satis]icd ;

3.2.2. The penalty method for the Euler Equations. The penalt;y method in the case of the 2-D

Euler equation is given by

OqN O[A F(q,@ (!I-£-G-(-q-!_-! = "rl,3Q(x, y)[f+(qN) .... f+(qM---.)] +
--5i---.............-&:.............

(3.9) _-2,4Q (x, y)[f- (qN) -- f- (qM-)],

where qM.--, is the state vector of the adjacent domain a_ the interface of degree M, n,3 (T_,4) denotes n (T2)

and r3(-:?) respectively, n and zt? (z_ and "r4) are the penalty parameters tbr the right(left) in x-direction

and top(bottom) in y-direction respectively. Q(x, y) is a polynomia.1 which vanishes at all of interior points

of the domain and is equal to 1 at the four interfaces. No_e that the boundary oI)erator B does not appear

in the scheme. Let A be the linearized Jacobian matrix (around a sta.t,e vector q0) of two inviscid fluxes

(an0) ..... , N' N;

where ff = (n_,nu) is the unit outward normal vector. Since the matrix ,4 is symmetric, there exists S such

that

(3.11) A = SAS -_,

where A is a diagonal matrix composed of eigenvalues of A. Then A = A + + A- a.nd A ± = SAiS -1. A ± is

defined as in previous section. Splitting A yields

(3.12) f± .... Aiqo,.

where f± is obtained fl'om t,l_e linearized sta_.e.

REMARK 1. Since ff = (n_.,ny) is tat;e_, to be outward normal vector, the stability condition (3. 8) is now

modified and given as

The Jacobian matrix A and its eigenw, lue matrix A are given in Appendix A.

For illustration, we consider the propagation of a Gaussian density peak at the (:enter of rectangular

physical domains. The physical domain is pariitioned with 16 sub-domains. The interface condiiions be-

tween the domains are imposed according to t;he penalW Euler equations as discussed above. Characteristic

boundary conditions are imposed at the outer physical boundaries. The results presented in figure 3.1 indb

care that the penalty formulation works well. From the numerical experiments of this problem, we observe
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F'z(I. 3.1. The propagation of a density peak with the penalty Euler equations with 16 sub-domains: The initial condition

(left,) and the solution (right) at _ 0.03604ms are given.

that reflections can be created at the interface across the adjacent domains depending on the choice of the

penalty parameters. Thus proper choice of the penalty parameters shou]d take into account retlections from

the interfaces. To demonstrate the above forn:mlatiorJ tbr the Euler Eq_lations, We will return to this issue
1in a f_t_lre paper

3.2.3. The penalty method for th.e Navier-Stokes Equations. When dealing with the Navier

Stokes equation, we keep the penalty form fbr the Euler fluxes and add a penalty term ['or the viscous

fluxes. The stability of this procedure stems from the fact that the Jacobian matrices for the full reactive

Navier--Stokes equation can be symmetrized by the same similarity transformation (see Appendix B). Thus

we get; the syst;em:

Oq:v O[NF O/j-vU _)I,x_F, OIx_G,,
---_fi----_.......-0:_):......._.............................0y 0x:............+.........a_:..............+-

"q,3O (x, y)[f+ (qN : .... f+ (q.,_.--.)] +

,7-2,4Q (x, y)[f- (qN) .... f- (qal.---)] -t--

";-_,sQ(x, y)[A., "qN .....A.,-qM-] +

(3.14) _-5,TQ(x, g)[A_. Oqar - A,-0q_,___].

Here f± are same as defined in the previous section and the Jacobia.n matrix vector A,_ is given by

(3.15) A, ..... _, ._, n_., _n_/ ,
\ oq_

and

where again q.__.and Oq___denote the adjacent domains state vecl;ors and t;heir derivat;ives. Note that the

penalty terms .A.,, • Oq does not appear in [4, 17, 18]. The penahy parameters "*_,r and "z-_,sare defined in

the same way as in the previous section. To seek stable penalt,y parameters we split the inviscid and viscous

fluxes and keep the stability conditions of T_,2,3,4 for the inviscid flux as in 'Cheorem 3.1. The stability

conditions of ra,r and r_-_,aare given in the following Theorem :

1.J.U..JUI]g, PbD the.sis, Div. of Applied Mai, h., Brown University, 2002



THEOREM 3.2. The penalty method for the Navier--Stokc,s equations (3. t J) is stable if the penalty pa-.

rameters Tj , j = 1...4 are a,s ir_ Th(_orcm 3.1 and the rest satisfy:

OJN7 _ .... _j_j78 = O_

1 + wN7_, .... w_,_4r_ = O,

wM_ _ .... 2",",,+ 4coN'ro -t............. <_:0 .
02 A4

PT"oof,

As in the proof of Theorem 3.1, we assume that we have t;wo domains and by multiplying the equations

by the st.ate vectors, we get

I d/..(3._s) _ ...... _ _(t) < [hw_scid]+ [visco,.8],

where [Invisci(_ and [Vi.scows] denote t.he terms from inviscid and viscous parts of the equation respectively.

The conditions for n,2 and 7)3,4 given in the Theorem 3.1 assure that the first term [Inviscid] is negative.

The [Viscous] part at the interN.ce is given by

N

[V i.sco'a.s] .....q_l'A_q' - E q:r A'q_c_'i --
i= 0

'M

qL_.,_!__- Z <___L_.,+__.j+
j o

(3.19) %wN[qT A_q ' - qTA.q:__] + 77wM [qT A_q!__. -- qT___A.q'] +

%wN[q_ A,q - q_ A,(t_ ] + 7sC_'z_±[q'_{_A#l_ - q__.A#t],

where (t_ denotes the derivative of q either in x or y direction, c_, is the Legendre weight, and A,.. is

(3.20) A,, \ _' Oqy /

Since all the eigenvalues of A,, are non-negative, every term inside the summations in the above eq_mtion is

not negative, and we wo_fid like to keep the boundary terms. Thus we get the energy essimate such as

2 dtld l_J,( Ot,.(_..[qr A_q' -- O,Nq'T A,,q ' -- qT]_d,,q'__. - C_,Mq.'_!rA,..q.___.]+

'T5WjV [qT Ar, q, -- qT Auq!__ ] -- TgOj M [qT_.Auqt___ -- q.T.Auq q _-

r(;wN [qr A.q -- qr A.q_] + rso'M[q__.'A.q- -- qi_r_iA,..q](3.2_)

The RHS of (3.21) can be rewritten as

(3.22)

where u = (q, q_, q_, q!__) and 11 is given by

2o0 A.

(3.23) B = -_Ai_'- _sA,,
(1+ <_)A:','

t_H S' --- 'tt :r B u,

....o.oA,,----os£ (_ + _).<, ----_A_"_
2c_sA,., -v7A, (-1 + err).,4, )-o'7A_' -2c_:vA. 0

(-1 + o-r)AT_ ' 0 -2wMA.



with0= dia9(O, O, O, 0), cys = tv_\,%, %; = o<x;T(_, cy7 = c_2_1T7 a.nd as = a;_Ts. It is su_eient for the proof if/3

can be shown to be negative semi--definite. This first leads to:

(3.24) a,'NT{3 < 0, 0:N'r(_ = C0M%, ] + C<V% -- WM'r7 = 0.

Note 5hat. we use here the fact that A_ is symme{xizable (see Appendix B). Taking into account (3.24), B

becomes

(3.2s)
2as ....ar .... 1 + 07 "_/3 .... ---o-r ....2con 0 ) .

....1 + oz 0 .....2o:¢l

To ensure negat.ive semi-definiteness, det(B) < 0 and therefore

( 1 ] ) 2_2 1 o_r+4ers+__

Thus

1
<0.

0JM

(3.27) a_- < or _ o +

where

0-7@ ..... 02_$I 4-&)N

--1

Here we not.e that the condition that os < ;K:LT.g--g77-ymust be also satisfied in order [br err to have real

root. This yields the conditions in the Theorem. [5 Note thin. these conditions are given independently of the

local flow properties. And moreover, the penalty parameters of each doma.in are constrained by it.s adjacent

domain.

REMARK 2. FOr g tO be outward normal vector the condition (3.17) is now .qiven blq

aJj-v,rv <_ O, '_Nr_ + oJa_r_ ..... O, 1 + coxr,,5 + co,,vrr7 ..... O,

1 1) 2 _2 1(3.28) ;-57: + :;:77 <'_'_7 + 2"_-_+ 4<,_rB -+...........a,,,_ _< 0

with the conditions (3.13)

3.2.4. The averaging method. We show in this Section tha.t the averaging method can also be writ_.en

as a. peualty method wit.h a particular choice of the parameters.

Euler Equations :. We start first with the Euler equations: consider the following penah, y method:

__Oq OF OG = rl 3Q(x,y)[f'+(q) - f'+ (q-)] +
....

r.e,4Q(x, y)[f'-(q) - f'-(q-)],(3.2,9)

where

(:3.30) f,± ,..... (.A %,A±q,j) • fflqo,

Note that the penalty terms use the derivative of dm fluxes.

]0



1 1 thentheabove penalty method (3.29j is cquivah_nt to theTHEOREM 3.3. If _-1 = 'T:3= F, v2 = r4 = _ff

averaging method and is stable.

Pro@ W'e prove the theorem at tile interface x = 0 with tile rectangular domain and _ssume that

i then the method becomes1 a,nd 7-o = 7-4 =N=M. IfTl=_3=_,

(3.31) Oq' Oq" I (01 # OF Hx} OC'

and this is obviously equivalent to the Averaging Method. Here note diat oU oo H ..... oc Following the

same procedure in Theorem 3.2, the energy equation becomes

1 dE(t) 1 (qZA(/ qHAq H) Io + (T,q ± II +, I H)- - -v,_q )A iq_-q Io
2c_'N (it,. 2C_N

II'(3.32) --t-.('r_q" ....."r4qH)A-(q_ .....qx o.

Since _-, = T:3 = ½, _-2 = T4 = ½, _-md q_(0, y, t) = qH(0, y, t), the RHS of the above equation v_mishes and

the energy is bounded t)y the initial energy. S

The Navicr-Stokcs Equations :. The averaging method for the N--S equa.tions can be presented as

oq OF oc o_;, ocv ,,
ot + ox + Oy Oz Oy

a,3Q(z,y)[f'+(q) - f'+(q_)] +

r2,4Q(x,y)[f'--(q) - f"--(q-)] +

r,_,TQ(x,y)[A,,. O2q - A,-O2q_] +

(3.33) rt,,sQ(x, y)[A,- 0q - A.. Oq___],

where 02q is the second derivative of q in either x or y direction.

__ 1
TILE( REM ;3.4. /.fT1 = 73 = 5, 7) = 7-4 = g, 7-5 = 7-7 = g,) ,, 1 _ I and'r6 ..... v-8 ..... G5--2;, then the approximation

i.s continuous at the interface and the scheme (2.33) is stable.

i and "r-s ..... "r-8..... :Z}j, then (3.33) becomes,Proof. If' z-, = q23= _, 72 = r4 = .}, r5 = 'r7 = g,

Oqr OqH 1 (OF _ OI,'H_ OO
atl,, o= _-,,, o=-7\_+_) @

'/rq(0v: oF'y' ou.
+2\Ox + Oz ]+ O_

(3.34) +_1 A.. (0q H - Oq±),
0JN

and this ensures the continuity of the approximation at the interface. If the approximatk)n is smooth enough

such that the derivative of q is continuous at "the interface then this t)ecomes the averaging method.

Thus we get for _he energy:

1

fiE(t)- 1 (qi Aqi _ qH AqH _ 2qi.,t.qx_ + ..zqH.t_q x_,r_,) Ix O --2WN 2_N

//I , I II ? II_
q:_A,G.dz - G: ,'i,q_ ax +

2

(3.35) [(_q' '"_+ O-,_e' _-_q")A-] (q,'. _'"-r3q )a + - -q;)l_,=o÷

H i qH)l[(-,-_q' .....,,-_,/')A_(qL ----g_)-+ (':-W ...._sq )A,_(q_ ---- ,,. ,_ I_::::o.

1 1



Since ql (0, y, t) = qH (0, y, t)_ we have

1 d E t
ffST;_ _'() _ q*([(_r_....,r_)A+ + (_-_...._-_)A-]g ....g_) +

,11\

1 i
- - q_,))b==o.(a.36) (_ _s + --)A,.,(q_ "

and ..... z-8 1 the RHS vanishes. [3Thus if "rl = % = {, r_e = 74 = :_,. ris = "rr = E, "r6 ..... ffL;-_[;,

3.2.5. Adaptive averaging. To ensure/;he stability of the sctleme at; some particular collocation poinls

where _he solution become singular and unstable, we use the averaging method adaptively at select;ive grid

points. In particular, we switched from the penahy method to the averaging when the following criteria was

satisfied:

(&37)

or

([_P__n__(h:_!.J___n___w_:=J__> c .......
m,_. \1_ + p.---I' lT + T---I/ -

(a.3s) IP- f'--.[ _>c ......
IP+ I'-I

where C'_,¢ is a non-negative constant. Note that: C,,,_._ .....0 leads to the averaging method, whereas a large

C_._ results in the penalty method. For the value of C_._ used in this paper, we found out that; there were

very few points in which one needs to switch from the penalty to the averaging procedure. Moreover this

happened only at very few time steps.

,1. The Cavity System And Numerical C,onfigurations. In this section we describe the set up of

the simulations of the recessed cavity flarneholders by the spectral mul'd-donmin technique presented above.

The main goal of this experiment; is to investigate how the geometry of the o:ft 'wall affecta the flame stability.

4.1. Physical setup. In the SCRAMJet community, a cavity with the length-to--depth ratio L/D <

7 _ 10 is usually categorized as an 'operF cavity since the upper shear layer re-attaches at the back face [2].

h this work, we choose the L/D of the baseline cavity to be 4 and thus the ()pen cavit;y system is considered.

The coordinates of the cavity are (Tcm,--lcm) for the upper let?_ and (1 lcm,--2cm) for the right bottom

corners of cavity. With the length of the neck of the cavity fixed to be 4cm, we consider three different,

angles of the right corner of the floor of the cavity ( 6(I,45 and 30), we then compare each one with the

ease of the rectangular aft wall. The fluid conditions are given as folk)wings; the free stream Mach number

M = 1.91, total pressure P = 2.82(atm), total temperature T = 830.6(K) and normalized Reynolds number

/{_ = 3.9 x 10r(l/m). Note that the Reynolds number is here normalized and has a unit of 1�[length],

also the Reynolds number based on the cavity dimensions is O(105). The boundary layer thickness scale is

(5 .... 5 x 10-4: ('m,) , and finally, _he wall temperature is i/:_, .....460.7835(K). The initial configuration for _he

baseline cavity system is shown in Figure 4.1.

4.2. Numerical setup. We have conducted two different experiments for each of the following cases

(1) non-reacting cold flow and (2) rvacting .flow . We use 9 and 17 subdomains for both cases 1 and 2. For

the outflow conditions at: the exit; of the system and at the upper boundary, we mainly use a semi-infinite

mapping in order to reduce lhe possible reflections at the boundaries. The characteristic b()undary conditions

are also applied and will be discussed in t.he uext section and compared to the mapping. For the case of the

reactive flows, the cavity was initially filled wit& Hydrogen fhel with fuel-to-total gas ratio of 0.5. The order

12
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....... L
InlOclor 9O

F_G. 4.1. The initial configuration for the baseline cavit, y system.

of the polynomial of approximation in y direction in the domain beside the wall is taken large enough to

resolve the boundary layer well. Finally the adaptive filtering is t:urned on if the mass fraction of Hydrogen

a_d Oxygen exeeed _uhe range of -0.09 _< .[II_ _ 1.09,-0.02 < fo_ < 0.25 and the temperalure exceeds lhe

range of 300(K) < T _< 3500(K). As t;he shear layer and the eomplex features of the flows develop, lhe

adapt;ivity criteria for applying the loeal smoothing is sa_dsfied at some points. In the calculations, we use

the 3rd and 2nd order local filtering for the non-reactive and reactive flows respectively. It turns out that

the local smoothing was applied in very few points at the upper corner of the c_v]ty wall.

t_br the adaptive averaging, we use the criteria const;ant (2,_,_ such that; the difference of t;he state vectors

(or pressure) between the two adjacent: domains is less than 10%. In figure 4.2 the Penalty Navier-Stokes

equations were considered for t;he non-reactive cold flows. As evident from t;he contours of the density, the

approximations were well matched _t the interfi_ces. Here the outer boundary was approximated by using the

characteristic conditions of the invisdd fluxes. The adaptive averaging; with the given adaptivity conditions

above, took place at only a ti?w points. The characteristic boundary conditions using the inviseid fluxes yield

good results for both the problems of the density peak propagation and the non--reaetive cold flows. As in

figure 1, we observe that there exist penalty parameters satisf_4ng the stability conditions that may induce

reflec_dng modes at; the interfaces.

002 .,/,T i < i : i    iiiii!iiiiiiiiii!i:ii i! iii!!!/i)
....... ] :

FIG. 4.2. The non-'reactive cold flows with the pen.alty Navier'-Stokes equations: the der_.sity contours are given in th.is

]igur_ at t 0.25ms. 17 domains are used and the boundaries of each domain are shown..

5. Results And Discussion.

5.1. Pressure history. Figure 5.1 shows the pressure history of the non-reactive cold flows tbr the

various angles of the aft. wall a.t two different loc_tions inside the cavity, i.e. at the center, (x,y) =

'8.5cm,- 1.5cm), and at, the middle of the floor (x, y) = (8.5cm,- 1.9cm).

These figures show that t;he pressure fluetuat;ions in cavities wit;h lower angle of the aft; are wez_ker "than

m cavities wit;h higher _mgles. Ii is also shown ihat the at,tenuation of _he pressure fluctuations are obtained

bot,h at the center and the middle of the floor of (,he cavity. It is interesting to observe that the patterns of

the pressure fluctuations for a given angle at difibrent locations are different depending on t,he angle. In the

13



lOO tUo/D 200 _00 o 1oo tUOlD 200 _00

FId. 5.1. Pressure history for non-reactive flows: the le]_ p_nel represents the prm._su're history at the center of the cavity

and the righ, t panel at the 'mid, dle of the ]toot of the cavity. Each pan, el shows the ease of 90, 60, /_5 and 30 degree cavity w(dl_'

from top to bottom.

o
100 tUo/D 200 _00 0 100 tUO/D 200 _00

FzG. 5.2. Pressure history of the non-reactive ]tows with the use of the /_th, order filter: the le]_ panel represents the

pressure history at the ce_ter of cavity and the riftht panel ,_hows the left, panel in a smaller scale. Each panel sh,ows the case

oJ' 90, and 30 degree cavity v;alls j:rom top to bottom. Note that: th,_ scale of the right panel is different frvrn, the left.

case of the 30 degree aft wall, the pressure fluctuations are almost the same at the two locations considered

whereas the case of 45 degree shows a difference in the patterns of the pressure fluctuations between the two

locations. The pressure fluctuations at the bottom grows greater tha.n that at the center after some time.

FzG. 5.3. Streamlines: the left figure shows the stream, lines at t 1.685ms for the global filtering order 7 4 and the

right at, t 2.38ms j'or q; 6.

Figure 5.2 shows the pressure history when t;he heavy global filter is applied (in this case, the 4th order

tilter was used). Unlike the previous case illustrated in Figure 5.1, where the 6th order global filter is used,

the pressure ttuetuadons eventually decay out and a ]arge reeirculasion zone is formed inside the cavity

without any severe pressure fluctuations. Note thai, the scale in the left panel shown is the same as in Figure

5.1 while the right panel is shown in a smaller scale for a closer look. This figure shows that the large

recirculation zone(s) formed inside the cavity obtained by the lower order numerical scheme is induced not

physically but; rather artificially due to the hem_y numerical dissipations. This is clearly shown in Figure

5.3. In this figure a large recirculation zone is observed - this zone is formed earlier than this streamlines

are captured - when the 4th order filter is used(left figure) and an almost steady state is already reached as

the pressure history indicates in Figure 5.2. We find from the numerical results tha_ t;he large recirculati(m

is very sta.ble once it tbrms. This large recirculation and the steady state solutions are r_ot observed in the

case of ?_= (;(right). For the case of ? = 6 instead of the large single reeirculation zone, smaller scale vortex
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circulations are formed and they are interacting with each other, never reaching the steady state with time.

This result shows that for these sensitive problems, high order accuracy should be used in order to minimize

the effect of tile numerical dissipation.

Figure 5.4 shows the case of the reactive flows for the 90 and 3(I degree aft. walls. Similar features of

the pressure fluctuations are shown as in the non-reactive flows. However the pressure fluctuations are much

more attenuated for 1)oth tile 90 and 30 degree walls than in tile non-reactive cold flows. In the reactive

cases Hydrogen fuel, which was initially supplied inside the cavity was consumed. As time elapses, the fuel

is consumed out with the production of the water for these cases.

o loo tUO/D2OO _00 0 100 tU_D 2OO _00

F_G. 5.4. Pressure history ]br reactive flows: the lel_ panel represen.t,s the pressure history at the center of cavity and the

right panel at the middle of the floor of cavity/. Each panel shows the case of 90 and 30 degree cavity walls from top to bottom,.

F_(;. ,_.o._" The water co'ntou.r of the reactive flows: the left th.c wa_er density contour is given in the left, jig'are and its

strean).lines in the right figure at t -. 0.135ms.

These results demonstrate that simulations of cold flows do not necessarily shed light on the behavior

of reactive flows.

5.2. Flow fields.

Non-reactive cold flow

Figure 5.6 shows the density contours and streamlines tbr the 90, 60, 45 and 30 degree walls at the

instant time t = 2.4ms. As shown in the figure, the shear layer is becoming weaker as tile degree of angle

of the at% wall and the flow fields are becorning more regularized for the case of the h)wer angle. And note

that the density compression at the corner of the aft wall is also becoming weaker for the more slanted wall

cg_lses.

Figure 5.8 shows the streamlines corresponding to the each case of Figure 5.7. Note that compared to

tile non-reactive cases, the shear layers are less developed for the reactive cases. As the figures of the pressure

fluctuation history and Pigure 5.8 indicate, the shear layers are weak for both the 90 and the 30 degree walls

in the reactive cases.

Reactive flow

Figure 5.7 shows the wat;er contour inside the cavity for t;he different; angles at different time. Here we

define "the region where the flames are generated to be same as "the region where the water is produced. As

the Hydrogen fuel is consumed, the water is produced and start;s to be expelled from "the cavity to the main

channel. The flame-holding efficiency is enhanced if the chemical radicals (water in this case) are stably

circulating and long lasting belbre they are expelled from 5he cavity. Figure 5.7 shows that the lower angled
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PI(;.5.6.Tke density contour an,d the strearnline of the non-reactiw_ fl,ows: the left coIu_tn shows the dcn,_ity contour for

90, 60, _5 and 30 degree w(dls from top to bottom and the right column shows the corresponding streamlines at t .... 2.43ms.

Th.e maxi'mum contour level is 1.8 and the n_.i'ni'mum. 0.5 with the level step size 50.

aft wall (30 degree in this case) maintains more w_-_ter than the 90 degree wall at a given time. The figure

also shows that the lower angled aft; wall holds the flame (water in this case) longer than the 90 degree wall

- in the last figure in Figure 5.7 at t -- 2.26ms, the most water is expelled and the only the small amount

is left in the left corner while the 30 degree wall cavity holds the water still throughout the cavity. These

results imply that the flame-holding efficiency can be increased by lowering the angle of the aft wall of the

cavity.

Appendix A. The similarity transform matrices and the eigenvalues of the inviscid flux

with chemical species,

Air model without combustion

First consider the ideal gas composed of two ehemically non-reaeUve speeies (_or the ideal mono-atomie

gas A the diagonal matrix and S, the diagonalizer, were given in [15]). A is given by

A ....diav(C-_,+c, U._, g-i% g.V-c, gT-_, g._),

where U ..... (,_, v),/_ ..... (_,_:, nv) is an unit outward normal vector at the interface an(] c is a local sound speed.

D)r simplicity we assume that

CFP

p/ C_(,s)ds - P _ pC_,T,
Jo



t ..... O. 175ms

t ..... 0.275ms

::::7)?: •

t ..... 0.9,45ms

t .... 2.26ms

FIG. 5.7. The water contour of the reactive ]tows: the water density co'ntours are given in the left figures for 90 degree wall

and 30 degree wall in the right figures. From top to bottom, the instant times t are 0.175ms, 0.275ms, 0.945_ns and 2.26ms.

']'he maximum and minimum contour levels are 0.01 and 0.23 respectively with the number of levels 50.

This form is used only in the _malysis, as mentioned in See. 3.1, @i is expressed as a 4th order polynomia.1

in the temperature T. The nonlinear expression of @i makes it, difficult to derive the Ja.eobian matrices

of the fluxes. Our simplifications is a resuhs of assuming small coefficients of the high order terms of the

polynomial. In the a(%ual shnulations C_ is computed appropriately using the empirical law and assumed

temperature independent a_. each linea.rizadon step. With this assumption S is given by

1 1 0 1 0 0

W .-]-- C'rt z _ ..... Try _t .... C_t x 0 ...... _?,y

S ..... v -+-cn_j v n,_, v .....cn:j 0 'n,._,

H+,.t2._ _C.&_ C._ H .....,:0._ i_>_ _;.I;.+,_
.....C.R'_z_.]'1 al 2 0 .A a,12 R,,

(,/{1fe a21 0 fe a,el -r_h

where H = (E + P)/S,m : _/(S:{_C,,),_,_= <i,o ...._._,o _, = E{_:::_.f_n_,a ..... _/(_,, + r@, the
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t ..... O. 175rn, s

t ..... 0.275ms

t ..... 0.9,45ms

....... i-_i'\_i;,'.,!:; ......... __Z_t_ _i_ -_L_

t .... 2.26ms

FIG. 5.8, The streamlines for the reactive flows: the streamlines for 90 degree wall arc shown in the left figures and the

30 degree wall in the right. P¥o'm top to bottom the times t are 0.175re.s, 0.275m.% 0.945_ns and 2.5l.m._.

tangential vector 1_'_= (.---.n_, n,_) and

a_j= k',.,::k,ho _ :_,fl_,_),:._.:_= R_ (R_I_,_- k'.l_°'_
,_ j _ j :

Note that, /_, = 2: .....1 tbr the mono-_tom]c ideal gas with 7, the ratio between the heat capacities Cp and

Cv.

Air model with combustion

Con,_der now the equations the Euler equatiot_s with four reactive species. In this case A and S are

given by

A = diasj(_?. _ + c, t)_. _, C.._, _/. _.--c, C. _, C. _, t)_. _, C.._),

18



and

1 1 0 1 0 0 1 1
"_ 4- C7_, x 'g --?_,y '_ -- C/_tx 0 --Tly 'it "_t

V 4- C'f*,_ V ftx b' ..... C'r_?_ 0 7_ x V V

_-_ --_ -_ --" . "" _-'_ g _-_ (7H 4- cU . ff, _._,,. 5 b . k H .....c_] _ tic- (} . _:4- c _-O . _, .
S ..... ]] a_ 0 .fJ a_234 l_1_34 .J3 (44

]:e a21 0 Jh a21>, R'esa,_ 0 0

fa 0 0 fa aal24 Ral>l <q 0

f4 0 0 f4 a,i123 R4123 0 a41

where all the variables are same as in the two species case except that

(hO 0 O_ )

and

[_ijkl ...... Cijkl( [_j ..... _k -+-]7_l)C/ _h_

with

4

[_h = E eiJa:ll_i(h.? - hO_:+ hl)),
i 1

i,j,k,l=l,23.4, j<k<t,

eiy is the permutation symbol and /{_, = _i4j J'i/_i- A and S are based on the time dependent local spatial

quantities a.t a given time. j'± is calculated at the interface points at each time.

Appendix B. The symmetrizability of the coefficient matrices of the Navier-Stokes equa-

tions with chemical species.

In [1] it had been proven that tile coefficient matrices of the Navier-Stokes equations (expressed in

the primitive form), of the ideal gas can be simultaneously symmetrized. In [12, 15] tile same result was

demonstrated for the conservative form of the equations. Here we show that it is also true for the Navier-

Stokes equations of the combustible gas with multiple chemical species in two dimension.

Rewrite the linearized Navier-Stokes equations (2.2) in conservative form without the chemical source

term as

Oq Oq
-_;_- D 02q 0'2q

4-B = c--C .... +-
........Ot 4- A _--_. Ox _ -_)7_][I E-O_ -:d'

where A = OF B = _(' aG l) = aJ_'. OG_. and E = oG,_
0_, _, C = ?7-'-- ?_;- + -i?q-;;- 7Y_7-" It is sufficient to consider the chemically

interacting two chemical species. The coefficient matrices are given by

a .....

0 1 0 0 0 0

.....'u_ (2 .... I{_,)u .... t_,v _, t/,'l _"2

....u,v v u 0 0 0

-uA A 0 0 u 0

-uf_ f2 0 0 0 u
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0 0

0 0

0 0 0 0 0 0

-v 0 1 0 0 0

-,u 1 0 0 0 0

-2,_v v u 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

o-2 0

0 oh

'u,(o2 .....G3) v(G1 .....0-3)

0 0

0 0

0

0

tG

0

0

0 0

0 0

0 0

G3 (_1

0 0

0 0

0 0 0

0 0 0

0 0 0

c_a _$1 _2

0 0 0

0 0 0

0

0

vv,_

V

0

0

0

0

($2

0

0

0

0

'U_)2

0

V

wl,ere V._ = :_-g/.5;, H -- r._+p_ _ _,_-+-_, , c,, . P , ,%,(u:,_ C),_ 0%- _ ...... 7----" ] ....... 7-----_or2 = 7' o3 = #7:K-_-:g-_( = ii-;_-:;,;V ..... , ......

[4,,L_,°,o_=-h_ko.s_- ?_= - --<_<' _ = 7_':+ ZL_" (h_- _,)k, e = _ - 2t:2 and :Cjk= <iu' + _._.,2+ c,:_O.

To find the symmetrizer for A, B, C, D and E we first consider the similarity transform matrix Sp of

C such that

ST_SCSp = Ac,

where Ac, is a diagonal matrix composed of t.he eigenvalues of C. The subscript P denotes that t:.his matrix

is adopted from the parabolic portion of l;he equations [1]. The diagonal matrix Ac, of C is givm_ by

Ac .....

0 0 0 0 0 0

0 o1 0 0 0 0

0 0 0-2 0 0 0

0 0 0 <_ 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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we have symmetrized all the coefficient matrices, i.e.

QTQS;;I.ASp = (QTQS};1A.Sp)T,

QTQS_;J BSp = (QTQS_E1BSp) :c,

QrQSpl CSp ..... (QTQS_ICSp)T,

QTQS_IDS P ..... (QTQS_IDSp)T '

QTQS_IES P ..... S_IESt ,

Appendix C. Constants for Chemical Models.

Here we provide const;ants used in the chemicM model for die curren_ numerical experirnenl_. Table I gives

the constant;s used _uoget t;he approximation of t:he specific heat @i of i m species in t:he 4th order polynomiM

of T, i.e.

where/_ is a. gas coustant, and Aii is a molecular weight of" i th species [16].

TABLE I

Coe].Jicients for the approximation of the specific heat C_,i

0,2 H,2 H.2 0 _<2
......................................................................................................................................................................................................................

c_(1/mole)

c2(1/mole)

c3(1/mole)

c_(1�male)

3.0809 3.4990 3.4990 3.1459

0.16962E-2 --0.18651E-3 0.14878E-2 0.99154E-3

-0.76334E-6 0.46064E-6 0.87544E-7 -0.22912E-6

0.17140E-9 -0.13157E-9 -0.11499E-9 0.12181E-10

-0.14116E-13 0.11679E-13 0.13495E-13 0.11024E-14

Table II gives the molecular weight and specific ent.hMpy fbr each chemica.1 species and Table III gives

the reference dynamic viscosity, temperature constants T and S in Wilke's law [21].

TABLE II

Molecular weights and specific enthalpy

] 0,2 He H2 0 At2

M(1/mote) 32.000 2.016 18.016 28.016

h°(Jo,zlc/kg) .-.272918.21 -4280070.46 --13973684.55 -302736.23

TAttLe; III

Constants for Wflke's law

........................................................................................................................................................................................................

02 H2 H2 0 N2
.......................................................................................................................................................................................................

po(h'g/m/,sec) 0.1919E-4 0.08411E-4 0.]703E-4 0.]663E-4

7_(K) 273.11:1 273.1111 4]6.667 273A 11
........................................................................................................................................................................................................

S(K) 138.889 96.6667 861.111 ] 06.667
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